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INTRODUCTION

The most common approach to structural dynamics problems is to
discretize the continuous structure in space, using, for example, the
finite element model. This leads to a set of ordinary differential equa-
tions in time. Integration schemes or modal superposition are employed
to solve these equations.

In the present effort the governing partial differential equations
for structural members such as rods, plates, and shells are transformed
into ordinary differential equations in space by discretizing the time
derivatives using a finite difference scheme. A mixed method for struc-
tural members, such as the transfer matrix method for beams or numerical
integrations for shells, is then applied to solve these ordinary diff-
erential equations. These computations in space can be stabilized with the aid
of the field method or Riccati transformatioms.

The method developed in the present paper is called the continuous-~
space discrete - time (CSDT) Riccati transfer matrix method since only
the time variable is treated in discrete form and the Riccati transfer
matrix method [1] is employed to eliminate the numerical instabilities
so often encountered [ 2] in spatial calculations. As mentioned above,
this method differs from the commonly used direct integration method for
structural dynamics, in which the numerical integration is performed on
a system of second order differential equations resulting from the usual
structural approximations of the spatial geometry of the members [ 3].

The continuous-space discrete-time method has been used in analog
or hybrid computers for the solution of partial differential equations
C4, 5, 6, 7, 8 ]. The central difference formulation was used in discretizing

the time derivatives. Stability of the method in the direction of time
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has been studied for parabolic heat transfer equations [9] and two
methods, i.e. the method of decomposition [10] and the invariant
imbedding method [11,12], were developed to eliminate the instability
associated with the resulting boundary value problem for the ordinary
differential equations in space. Breed [13] used a form of the CSDT
approach for the transient analysis of rotating shafts. A central
difference time discretization was used in his formulation. However,

no effort was made to stablize the integration for the resulting spatial
boundary value problem.

Without such a stabilization, the applications are severely limited.
This paper extends the continuous-space discrete-time method to the
transient analysis of structural members. The Newmark generalized
acceleration formulation is used for time discretization. Advantages
of this formulation over the central difference formulation usually
adopted for the continuous-space discrete-time method will be

demonstrated.
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FORMULATION OF THE CONTINUOUS-SPACE DISCRETE-TIME
RICCATI TRANSFER MATRIX METHOD

In general, the partial differential equations of motion for

structural members can be expressed as
2 angxzt)

DW(x,t) = jii Aj(x) atj -F(x,t) (1)
where W(x,t) is the N-dimensional column vector of dependent variables,
Aj(x) is an N-square spatial matrix, D(x) is an N-square spatial matrix
linear differential operator and F(x,t) is the N-dimensional force vector.
The terms associated with A1 and A2 are usually identified as the damping
and inertia terms respectively. If some form of finite difference
discretization is used to approximate the inertia and damping terms in
equation (1), then the partial differential equations can be transformed
into an ordinary differential equation with spatial derivatives only.

The linear multistep discretization is used for this purpose due to the
fact that most of the commonly used direct integration methods in
structural dynamics, for example, the central difference method [ 147,
the Houbolt method [15], the Newmark method [16] and the stiffly stable
method [17], can be derived from the linear multistep formulation. This

formulation can be written as

P.

W - W
150 % “mr1-1 T 88 5Zo By Tpr1g *
o 2 P .5
10 V1 "mri-1 T 8% fao O3 Mner-t ()

where dot notation is used to represent time derivatives, ai’ Bi’ Yi and
61 are coefficients, At is the time step and the subscript n+l-i denotes
the time at (n+l-i)At with n=0, 1, ---. Rearrange equations (2) and (3)

in the form
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The functions Pn and Qn involve variables at previous times only and
hence can be considered as the historical part in the formulation.
Substituting equations (4) and (5) into the governing equations of
motion (1) at time (n+l)At, we have

Ala Ay
0 2'0
Dw;:1+1 (B At : z)wn+1 * A1Pn % AZQn = Fn+1 @)
e} GoAt
or DWn+1 - an+1 - R 9
Ala Ay
0 2'0
vwhere K = 255+ + =00 (10)
0 o
Rh ) Aan = AZQn 3 Fn+1 11

Equation (9) is a differential equation with spatial derivatives only
and hence, the dynamic analysis of the structural members can be treated
at each time step (n=0,1,~--) as a static problem by considering R.n to
be a generalized extermal force acting on the member.

In principle, many methods for solving the ordinary differential
equations such as the Runge-Kutta and predictor - corrector methods
[18] can be applied to solve equation (9) with the prescribed boundary
conditions. Here, the mixed method techniques such as the transfer
matrix method for beams are used. It would appear reasonable that

numerical integration could be employed for shells. Note that the form

of equation (9) is similar to the governing equation for a structural member

on an elastic foundation with an equivalent elastic foundation modulus K
given by equation (10). Also, in the above formulation, At must be taken
fairly small in order to keep the time discretization error reasonably
small. However, a small value of At corresponds to a large value of
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elastic foundation modulus K. Normally with such a K one would expect to

encounter numerical difficulties when, for example, the usual transfer

matrix method is applied. Several techniques are available to overcome

such numerical difficulties [2]. One of the better methods is to use

the Riccati transformation or the Riccati transfer matrix method [1].
Consider the formulation of the Riccati transfer matrix method.

Let (U] denote the NxN general transfer matrix which transfers the

state variable (W] from station i to station i+l across segment i, at

time (n+1)At. Then

Cwl,,, «Cvilvl +L[¥l, (12)

where F contains the loading terms which are evaluated from the general
loading function equation (11). Both W and F are Nxl matrices. Let the

transfer matrix be arranged and partitioned so that

£ 3 011:912] [f] [Ff]
['e_]i,,l ['Uz'l 80 T WO PR & R i

where f contains the N/2 state variables corresponding to the homogeneous
left hand boundary conditions and e contains the respective complementary
N/2 state variables.

A generalized Riccati transformation at station i is given by

[£], =Cs1fel, +Ce], (16)

which relates half of the state variables to the remaining state variables
at station 1. Using equations (13) and (14), it can be shown that a

general recurrence relationship could be obtained as [1]

Ly =08y fedyyy IRy, s
where [s,,; = (0,8 + U,,1[0,s + 0,,T;" (16)
[Plyyy = [UP + Fely - [8],,,[U, P+ F 1, an

Thus, the matrices [ S] and [ P] determine the state variables f from e
I1.6
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at any station. Another matrix [T], which transmits the state variables
e from station i+l to station i, can also be obtained from equations
(13) and (14) as [1]

fely = [Tlyyqlelyyy + (@1, f
vhere [T], , = [U,,S + Uzzlzl (19)

[Qlg4g = =M1 [P + Fely e

To start the calculation, the submatrices of the transfer matrix
in equation (13) must be determined. The matrices [S], [P], [T] and
[Q] are calculated for each station while moving along the member from
left to right with th~ boundary conditions {S]o = [P]o = (0. When the

last station m is reached, equation (14) gives

(€1 = (s][e] + [P], (21)

The N/2 known state variables at the right hand boundary are
substituted into the above relationship to determine the remaining
N/2 unknown state variables. Successive applications of equations
(18) at each station allows the calculation of N/2 state variables e
while moving from right te left along the member. At any stationm,
the remaining N/2 state variables f are determined from equation (15).
This completes the formulation for the continuous - space discrete -
time Riccati transfer matrix method.

Due to the generality of the transfer matrix method, this method
can be used to solve structural members with variable cross section and
arbitrary boundary conditions. In cases when the transfer matrix has to
be evaluated numerically, this method can still be used with the same
procedures as outlined above. For example, members with continuously
varying cross-sectional properties and those with more than four equations
of motion, i.e. N > 4 in equation (1), numerical integration may be

required to evaluate the transfer matrix. The finite difference discretiza-




tion equations (2) and (3) are used to transform the governing partial
differential equation into ordinary differential equations, and a numerical
method such as the Runge-Kutta or predictor-corrector are applied to provide the
transfer matrix (U] in equation (13). Once the transfer matrix is obtained,

the Riccati transfer matrix method can be applied.

Concentrated occurrences can be treated the same way as in the Riccati
transfer matrix method [l1] except for a dashpot or a concentrated mass whose
behavior depends on the velocity or acceleration at that point. Consider
a segment of beam containing a dashpot (Fig. 1). Let L and R denote the
sections just to the left and right of staticn i where the dashpot is placed.
The transfer matrix across the dashpot can be expressed by'a point matrix

at time (n+l)At as

2 N 4 N7 N\ o 3

Ya+l Ll e Yokl 2

®ae1 = S Rhac SRR P . (22)

Mo 0 0 1 o0}IM 0 .
¥

v 0 8 o 1Hy.. c 2ntl

L} “!JR. L 2 Ji n"'l‘ L 3 at J

where. y, 0, M and V are the displacement, slope, moment and shear force of

the beam respectively. When equation (4) is used, equation (22) can be
written in the form

- 2 N oy — 1 = e
¥ 1 0 0 0}y 0
) 6 1.0 ol e 0
T o 0T o) e 0

c
v SS9 o0 1} lv CP
KN _EoAt <X R [ *a)

The same procedure can be applied to the case where the solution is
needed to cross a concentrated mass. The transfer matrix across the mass

can be expressed by the point matrix

IIIS




= e ey r— —t | — o e —
Yo+l S T 0

0 0 1 0 0 (¢] 0

o+l i n+l " (24)
Mh+1 0 0 1 0 Mh+1 0 .

a (e N

v g 0 0o tliv n&Yutl

+ +1 ots
...n LR s = L.n _JL L £ s

If the approximation equation (5) is applied,equation (24) will be

in the form

g _—i 0 0—_ v 0 ]
yn+1 g yn+1 0
) 0 1 0 o0 ) 0
n+l 3 nt+l & (25)
Mn+1 0 0 1 0 Mh+1 0
Bn+1 -—Yﬂ—‘é‘ - 20 5 et T
—R L_O t o L _JL e =

The Riccati transfer matrix method using the point matrices (23) and

(25) can be used to carry the solution across the dashpot and the
concentrated mass. Such in-span indeterminate conditions as moment
releases and rigid supports require special attention. The same is

true for prescribed time-varying displacements. Consider, for example,
the beam in Fig. 2 which has two successive prescribed time dependent dis-

placements & and 61 applied at position x = a and a,., The unknown

i-1 i-1 i

force wi_l(t) is introduced at x = a, The point matrix corresponding to
this force is

TR 5

0 1 0 0 0

SRR ST R R o

0 0 0 1 wi~1(t)

fi 0 0 0 1 _J
From the condition ¥ * Gi(tn) at t = nAt, x = ay and the predetermined
field transfer matrix between a1 and ags the unknown force Wi_l(t)

can be determined as

II.9
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(27)
+ Wi-1(t_) Uyv + Uyp

where Uyy’ Uye’ UyM’ va and UyF are the first row elements of the field

transfer matrix and yi_l, ) and V are the state variables at

-1+ Yy )

X = ai—l' Equation (27) then yields for the unknown force
o Uyy _ Uyd _ UyM
W gogt = -5 00 by S T e
yv yv yv (28)
8i(tn)-UyF
-V g S1iCn)="yF
i-1 va
The point matrix to transfer across x = a; is found from equation (28)
as
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0 (29)
-Uyy/UyV -Uye/va —UyM/UyV 0 (éi(tn)—UyF)/UyV
L__0 0 0 0 1

This point matrix can be used to evaluate the matrices [ S], [P], [ T]
and [ Q] for the Riccati transfer matrix method.

The investigation just completed is sufficient to find the unknown
force corresponding to an applied displacement using the condition at the
next in-span or prescribed time dependent displacement position. This
procedure can be applied until the last station is reached. However,
the N/2 known state variables at the right hand boundary are not enough
to determine the remaining N/2 unknown state variables because one of
the homogeneous boundary conditions was used to determine the point matrix
for the preceeding in-span condition or prescribed time dependent dis-

placement. The unused condition at the first (counting along the member

II.10
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from left to right) prescribed time dependent displacement can re-
place this used boundary condition by being available for fixing the
remaining unknowns. For example, let i denote the station of the
first prescribed time dependent displacement and assume the displace-

ment is contained in the state variable [ f], then, by equations (15) and

(18)
Cel =Ls) Lel +LB] (30)
Eel s =00 el #Eal (31)
C "-]1;1 =Ly, Ledyy, +Lady, e
Ced, LWl Lale, +LQ0 (33)
L£l, =[s) . [el +LP] (34)

By sucessive substitution of equations (31), (32), (33) and (34), the

following relationship between[f]i and Ee]m is obtained.

Eel, =LslCel +L2] (35)
where [ S] = [S]i ET]i+1 ET]i+2 --- [T]m
s Cp] = L8], D20, L]0 = ~= (0], + ==

+{s], (1l Lad,,, #+Ls], Lad,,, +Er],

i+2

The prescribed time dependent displacement of equation (35) and the
unused homogeneous right hand boundary ccndition of equation (30) give

two necéssary equations for the two unknown right hand boundary conditioms.
Once the boundary conditions are evaluated, the Riccati transfer matrix
can be applied.

STABILITY AND ERROR ANALYSIS
Now that the formulation of the CSDT Riccati transfer matrix method
using the general multistep method has been presented, it is of interest

to ascertain the values for p and the coefficients in equations (2) and




(3) to be used. Usually, it is desirable to make p large so that the
truncation error can be reduced [19]. However, in structural dynamics
problems wherein oscillatory functions dominate, it is not clear that
the truncation error should be used as a measure of total accuracy of
the method [20]. Some other factors such as the amplitude decay, period
elongation and effects of spurious roots (for p > 2) could also be
considered as primary accuracy measures. The stability and accuracy
analysis of some of the commonly used direct integration schemes in
linear structural dynamics based on the finite element model of the
equations of motion have been studied by several authors [14,21,22,23,24]
For our formulation, several techniques including the central

difference method, the Houbolt method, the Newmark method and the Wilson
8 method, have been studied for time discretization and it is found that
Newmark's generalized acceleration method with the following relations -
gives the most satisfactory results

2

. LA 2..
y, + oty + (s - B)AL" y_+ B A"y o, (36)

Yo+l
Past *7, ¢ (A =-ybey +vydbc y (37)

The truncation error of this formulation is At2 and no spurious roots
are involved. Consider the analysis of a simple bar with the governing
partial differential equation

3_3 o g_:i (38)
where a -~JEZ7;, E is the modulus of elasticity, m and A are the density
and cross-sectional area of the bar respectively and X is in the direc-

tion of the bar axis.
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Let equation (38) be multiplied by (% - B)At2 at time nAt and by
BAtz at time (o+1)At. The following equation is obtained by adding these

two expressions and using equations (36) and (37)

2 2
4 ' Y e
BaZac? iz%ﬁl + 05 - 28 + mase? T+ 0 - v +patae? gL

- % (39)
yn+1 2yn o yn—l

The stability of equation (39) can be investigated using von Newmann's

stability criteria [ 25]. Assume
Tn inx
y. = te (40)

where T is a function of time only. Substitute equation (40) into equation
(39) and solve the resulting relationship for T. Then, two solutions

are obtained

2 J—
A _LZ-(%LZB'*'Y)B FvD 1)
$ 2(1+882)

where D = [ (=26+y)2 - 48(s-y+8) 18" - 482

and B% = nZa’ac?
For stability, it is necessary to have
D <0 (42)
Before drawing conclusions from equation (42), consider the error
associated with solution (40) by assuming that condition (42) is satisfied.
Note that
g = ein(X:at) 43)
is the exact solution of the governing equation of motion (38). The
accuracy of the method can be evaluated by comparing equation (40) with

equation (43) and rewriting equation (40) in the form

Ty cos®9e 1(X £ Va nét) (44)

where 6, o and |y can be evaluated using

o 6 o L2-X8 )% + 4vsxsn)B® - (x-upyyp’ ]

2(1+8B2)

‘=‘=“hu--n--iﬁn~£=ﬂ?ﬁz;JLa«-w»~<-




2 2 b
i tan-l C4(Y+X+R)B" - (12( -4BY)B
2-XB
a
¥ nalAt
and X = }-2B+y ; Y = }-v4B

From equations (43) and (44), we can see that these two solutions will be
identical to each other if the value of cos 0 and ¥ are equal to 1.

If we set cos 6 = 1, then
2 2
Cs~Y) (BB"+1)B” = 0 (45)

This equation is satisfied if we set y=)%, i.e. there is no amplitude
decay error associated with the method if y=). Now, return to equation
(42). With y=)%, equation (42) gives

D = (1-48)B* - 4B2

In order to have D < 0 for arbitrary values of B, we must have 8 > %,
i.e. the method will be unconditionally stable if we choose B8 > %.

With y=)% and small At, the parameter | can be expressed as

2.2, 2 4 4, 4
v =Va-qrapniatae® - 1 83“ Ve <1-4B>n2a2At2

2-(1-28)n’a 2A¢2 2-(1-28)n%a’at

oo - (6T

which in no case will be équal to 1. Thus, the method has a period
elongation error which is a function of the time step used.

The stability and error analysis for a simple Euler-Bernoulli beam
can be carried out in the same fashion since the governing equation of
motion for the beam has the same form as equation (38) except that there
are fourth order derivatives in x and EA is replaced by EI. As a consequence,
all n2 in the analysis should be changed to na. However, the conclusion

is the same, i.e. the method is unconditionally stable with B > ) and




has no amplitude decay error if y=!%. Also there is an error in the
period elongation which is a function of At.

The foregoing stability and error analysis was based on systems
with no damping. For the case of non-zero damping, the stability and
error analysis would have to include the damping coefficient as an add-
itional variable. Usually, however, small values of the damping coefficient
do not change the overall stability characteristics of an integration
scheme [3].

It is of interest to note that if we choose the parameters to be
B=1 and y=3/2, the Newmark formulation equation (39) is identical
to the central difference formulation. We can conclude from the analysis
of this section that the central difference formulation used by all of the
previous works on continuous-space discrete-time method is unconditionally
stable but has amplitude decay and period elongation errors. These errors
can be investigated by setting B=1 and Y=3/2 in equation (44)which give,
for small At,
-nnzazAtZ/Z

o™ = & + 0(At™) (48)

and § = 1 - n%a’ac?/3 + ocac®) (49)
Thus, we can see that the central difference formulation of the continuous-
space discrete-time method has amplitude decay error approximately equal
to e nzaZAtz/z and the period is increased in the ratio 1/y = 1+nzazAt2/3.
NUMERICAL EXAMPLES

In using the direct integration method, the most difficult decision
is to select an appropriate time step At. On one hand, the time step must
be small enough to obtain an accurate solution. On the other hand, the

time step must not be smaller than necessary in order to reduce the computa-

II1.15
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tion cost. Usually [3], a time step smaller than 0.01T is suggested
for the commonly used unconditionally stable direct integration methods
where T is the period of the response..” Judging from the numerical results
of the examples in this section, a larger time step could be used without losing
accuracy for the present method. However, in using the Riccati transfer matrix
metho& it is helpful if the length of each section is chosen to be small
enough such that all the terms for any element in the transfer matrix are
the same order of magnitude [1]. Hence, the section length for the space
computations should depend on the time step chosen for the problem in
order to satisfy the above criterion.
It is difficult to compare the efficiency of the present method to
the other direct integration methods based on finite element models.
The present method is especially appropriate for structural members. The
cost of the present method in carrying the solution forward onme time step
could be estimated roughly from Ref. 1 which shows that the use of the
Riccati transfer matrix method to transfer from one .station to an adjacent

3/2
/ + 4 (N/2)2 multiplications, where N is the order of

station requires N
the transfer matrix for the structural member.
Extension bar
Consider the displacement at the tip of a cantilevered elastic bar
subjected to a suddenly applied concentrated loading at the free end. The

problem parameters are shown in Fig. 3.

The governing equation of motion for this problem is the wave

equation
B_Zz.l_ 3_22 (50)
axz 32 8:2

where a = /EA/m is the wave propagation velocity. Let us assume that the

II.16
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bar is initially at rest, i.e.

en . 3(xt)! s
y(x,0) =0 ; =53 a0 = 0 (51)

To solve this problem using the CSDT Riccati transfer matrix
method, replace the governing equation of motion (50) at time (n+1)At by the

following equation, in which we have employed equation (36)

2
d’y y
n+l n+1
4zt T Balhtl R(x) ; n=0,1,2, =-=—- (52)
x .
y y LN
where R(x) = - 2“ % 2n = 1_2 (;_B _ 1)Yn
Ra“At Ba“At a

Equation (52) has the same form as a bar with an elastic foundation whose
transfer matrix is [26]

y .coshaf sinhal/EA « y

- (53)
P EAa sinh af cosha P

+1 i

where az = I/BaZAt:2 and £ is the section length between station i and
i+1. With a fixed left end boundary condition, the submatrices necessary

to perform the Riccati transfer matrix method are
C£] = y ; Lel=rP

[Uu] = coshal ; [Uu] = ginhal/EAa

(54)
[U,,] = EAx sinh o £ s [U,,] = coshal
21 . 22

fFf] = - 1 R(x) sinho (2-x)/adx ; [pej = - rR(x)EAcosha(l-x)dx
o)

As mentioned earlier, B > Iz should be used in the calculation. In
order to choose a proper value for B and to see more clearly the error

involved in the present formulation, suppose the bar is one section long.

The displacement at the tip of the bar for the first time step would be




- BPoalAtsinhal
b4 EAcoshaL (35)

The exact solution for the problem is [27]

- Paat P
y A for t < Py (56)

By comparing equations (55) and (56), we can see that the best
choice for the value of B is 1 and in this case the error term due
to the discrete-time process is sinhaL/coshoL. This term will approach
unity as a > «, i.e. At + 0. 1
The exact and computed results (with B=1) for the displacement
at the tip of the bar are shown in Fig. 4. Several values of f were
tried and the solution does not show much sensitivity. Although the
present method was proved to be unconditionally stable, the selection
of At used in performing the integration determines the accuracy of the
method. Here, the accuracy calculations were made for different
values of At and are displayed in Fig. 5. These solutions indicate that
At = 0.025T gives satisfactory results.
This same problem is also solved with damping coefficient C = 10 lb-sec/in
in order to see the effect af viscous damping in the application
of the CSDT Riccati transfer matrix method. Figure 6 shows the results
of the present method and the exact solution found using integral
transforms.
Euler-Bernoulli beam with simple supports
A uniform Euler-Bernoulli beam hinged at both ends with a
bending moment applied at the end x=L as shown in Fig. 7 is
analyzed by the present method. Numerical and exact [ 27] results for
the displacement at the middle of the beam are shown in Fig. 8 where zero
initial conditions are assumed. The numerical results match very well
with the exact solution even when the time step 0.025T is used.
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The accuracy of the present method as a function of At for this
problem is illustrated numerically in Fig. 9.

In order to see the effect of amplitude decay error in using the
central difference formulation for the present method, this example
problem was also solved by setting B=1 and Y=3/2. These results are
shown in Fig. 8. Hartree [ 4] proposed the use of the W extrapolation
process to improve the accuracy of the central difference formulation of the
CSDT method. This process was applied and the improvement to the central
difference formulation is illustrated in Fig. 8.

Cantilevered Euler-Bernoulli beam

This example is taken from Ref. 28 where the Newmark method was
applied. The problem considered was an elastic cantilever beam subjected
to a suddenly applied concentrated loading at the free end. The parameters
and the finite element idealization of the beam used in Ref. 28 are shown
in Fig. 10. The numerical results for the displacement at the tip of the
beam by the present method and the results by the Newmark method [ 28]
are shown in Fig. 11.

An integration time step of 1x10.6 seconds was used in Ref. 26.

The solution became unstable if the time step increased to

1x10.5 seconds. In the present method, the beam was divided into ten
sections and a time step of lxlO.4 seconds could be satisfactorily used.
This is about 100 times larger than the value employed in Ref. 28.

The same type of problem has also been solved in Ref. 29 using the
Wilson 6 method with the following parameters: E = 3x107psi; m = 0.000733
1bpm/in; L = 120 in, I = 3 ina. Figure 12 shows the normalized displacement

at the tip of the beam.




Timoshenko beam with concentrated loading

Davids [30] solved a cantilever Timoshenko beam by using the so-
called direct analysis method. The parameters for the beam given in
Ref. 30 are: E = 3x107psi; v = 0.3; ¥ = pg = 0.3 1b/4n’; A =1 1n%;

AS = 0.833in2; and IT/I = 1, where I is the transverse moment of inertia
and IT is the rotary moment of inertia. Note that for the Timoshenko
beam, the time derivative appears in both the mass inertia term and the
rotary inertia term and hence, the finite difference formulation equations
(36) and (37), have to be applied to both terms. The resulting equations
have the same form as for the static response of a beam with equivalent
extension and rotary foundations subjected to generalized external moments
and forces. The general forms of the transfer matrix for such a beam

can be obtained from Ref. 26.

The numerical results from Ref. 30 and the present method with ramped
shear and moment acting on the free end of the beam are shown in Figs. 13
and 14 respectively. Only the ratio of the transverse moment of inertia to
the rotary moment of inertia was given in Ref. 30. No values were indicated.
A one inch square beam was selected for our calculations and hence I = IT =
0.0833in4. The time step of At = 10-6 seconds was chosen. In the direct
analysis method, the time step is determined from At = Ax/C where C -A/EE7EE;
is the dilatational wave velocity for the problem under consideration. The

section length Ax 1is arbitrary and is varied until any reduction in this

quantity will not yield any significant change in the resulting solution

5

of the problem. For the parameters given inthis example problem C = 1.968x10
in/sec. and hence if 30 sections are used as is the case with the present
method, the time step will be 2.56x10-7 seconds which is much smaller than

the time step used by the present method.




Beams with distributed loading

The dynamic response of a cantilevered rectangular beam subjected

to a uniform distributed ramp pressure over its length was analyzed by the

general purpose finite element program MARC [ 31 ].The pressure load

is ramped in the first increment to -655.65 psi and then brought down

with constant slope to zero at time .0l seconds.
parameters is shown in Fig. 15.
dimensional, rectangular section beam
different methods of analysis were employed.
the Houbolt method and the method of modal superposition.

ment at the free end of the beam is shown in Fig. 16.

The model with essential

The beam was modeled with three two-

column elements in MARC. Three
They are the Newmark method,
The displace-

This problem was

also solved by MARC using the Timoshenko beam element which allows

transverse shear as well as axial straining.

and modal superposition methods are shown in Fig. 17.

The results from Newmark

This problem is solved by the present method with a lumped mass

model. The mass of the beam is lumped at points 2,3 and 4.

The point

matrix for a concentrated mass with the effect of rotary inertia is

1 0
0 1
Eujl = |0 0

0 0

0 0

0

0

0
0

PlpOne1

pAyh+1

S i

(57)

When Newmarké#s formulation equation (36) is used, equation (57) can be written as

pooam

Col, = 0

0

0 0

1 Rl (58)
0 Fn

0 1 4

1 —-—




< SRR 2
where Fy,=-pL.(8 +At +(-B)At"8 )/BAt

and FV1= -pA(yn+At§rn+(!5—B) Atz'y.n) /BAtZ

The field matix for the massless beam with the effect of shear deforma-

tion is
1 ) ~22/281 -23/6EI+2/GAS F
0 1 2/EI 22/2E1 Fy
% (59)

Cud, =1, 0 1 ) F
M
0 0 0 1 7,

0 0 0 0 1

where the loading function Fy, Fe, FM and EV are

Fy=p(c)(24/2451-2,2/2GAS), Fg= -p(t)L3/6EI, Fy= -p()L2/2, F= -p(t)

The solution is carried out first for the Euler-Bernoulli beam with
transfer matrices (58) and (59) by setting IT = 1/GAs = 0. The result
is shown in Fig. 16. The solution for the Timoshenko beam is also
calculated with the results shown in Fig. 17.
Elastic-vlastic material

Consider a cantilevered bar with an elastic-plastic material and a
constant step velocity of 100 in/sec suddenly imposed on the free end. This
problem has been solved in Ref. 28 using the Newmark method with a
finite element model of the bar. The parameters used in Ref. 28 and the
elastic-plastic model for the materials together with the finite element
model are shown in Fig. 18.

The problem is solved first for the elastic wave propagation. The

results for the velocity and stress of the bar obtained from Ref. 28 and

the present method are shown in Fig. 19. The plastic wave propagation
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problem is then solved using the elastic-plastic model shown in Fig. 18.
The results from Ref. 28 and the present method with B=1 are shown in
Fig. 20.

A possible formulation for the application of the CSDT Riccati
transfer matrix method to non-linear structural members is proposed
in Ref. 32. Both material and geometric nonlinearities are considered
and usually an iteration process would be needed. However, for this
problem, advantage can be taken of the fact that the general stress-
strain curve in the elastic-plastic model is composed of two straight
lines and, hence, the solution can be carried out by using the elastic
modulus E to form the necessary transfer matrix if the calculated
stress on a particular section of the bar is less than the yield
stress cy. When the calculated stress exceeds cy, the transfer matrix

is re-computed based on the plastic modulus Ep.
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CONCLUSIONS

The usual approach to transient structural-dynamics is based on
continuous time, discrete space ordinary differential equationms.

Here we propose a discrete-time, continuous~space approach, with the
Riccati transformation used to stabilize the spatial computations
for structural members.

The generalized Newmark acceleration formulation has been chosen
to approximate the time derivatives in the governing equations of motion.
The resulting method is unconditionally stable and has no amplitude
decay error if the two parameters in the formulation are chosen as
Y=} and B>%. The method, however, has period elongation error proportional
to the time step used in the integration. Selection of the proper
integration time step is always a problem in the use of a direct
integration method. Although most of the commonly used methods are un-
conditionally stable, there are amplitude decay and period elongation
errors associated with the use of a large At. Usually, a time step
smaller than 0.01T is suggested for most of the methods where T is the
period of the response. Although the same difficulty is experienced in using
the present method for bar and beam vibration problems it appears as
though a somewhat larger time step can be used with sufficient
accuracy. This conclusion, however, should be scrutinized after this
method is applied to other types of structures.

Numerical examples included bar and beam vibration problems. Although
the gecmetries and loading conditions were simple, the proposed method ap-
plies to more complicated situations. Due to the generality of the transfer
matrix method, the method of this paper can be applied to structural members

with arbitrary boundary conditions, inspan supports, and geometric and

material nonuniformities.
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Fig. 1 Dashpot concentrated occurrence

Fig. 2 Beam with prescribed time dependent displacements
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Fig. 3 Cantilever bar with a concentrated loading at the free end

Exact Solution
Present Method B8=1 a0

(At = 0.25T)
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Displacement at x=L (in)
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Fig. 4 Results for the vibration of the cantilever bar of Fig. 3
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Fig. 5 Effects of the size of At for the vibration of the cantilever
bar of Fig. 3
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Fig. 6 Results for the vibration of the cantilever bar of Fig. 3
with viscous dampling included
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Fig. 7 Simply'supported beam with a bending moment applied at the end
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Fig. 8 Results for vibration of simply supported beam in Fig. 7
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Fig. 9 Effects of the size of At for the vibration of the simply
supported beam in Fig. 7
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Fig. 10 Cantilever beam with a concentrated loading at the free end
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Fig. 12 Results for the vibration of the cantilever beam in Ref. 29
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Fig. 15 Cantilever beam with distributed loading
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Fig. 17 Timoshenko beam results for the vibration of the cantilever
beam of Fig. 15
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Fig. 18 Cantilever bar with elastic-plastic material
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